Indian Statistical Institute

M. Math 2nd year

Academic year 2022-2023
Endsem Examination
Course: Special Topics in Geometry: Harmonic maps
02-05-2023
3 hours

- Answer as many questions as you can.
- You may use results proved in class, but make sure to state them clearly.
- Maximum marks is 60 .

1. Let $M_{n}(\mathbb{R})$ denote the vector space of $n \times n$ real matrices, and let $\operatorname{Sym}_{n}(\mathbb{R})$ denote the vector subspace of symmetric $n \times n$ matrices, where both vector spaces are equipped with the operator norm. Let $O_{n}(\mathbb{R})$ denote the set of $n \times n$ orthogonal matrices.

Let $f: M_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ be defined by $f(A):=A^{T} A$ for $A \in M_{n}(\mathbb{R})$.
(a) Show that f is differentiable and compute the derivative $D f_{A}$: $M_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ for any $A \in M_{n}(\mathbb{R})$.
(b) Show that if $A \in O_{n}(\mathbb{R})$ then $D f_{A}$ has full rank.
($5+5=10$ marks)
2. Let $A: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a symmetric bilinear function, and let F : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function defined by $F(x):=A(x, x), x \in \mathbb{R}^{n}$. Show that F is twice differentiable and $D^{2} F_{x}=2 A$ for all $x \in \mathbb{R}^{n}$. (10 marks)
3. Let M be a smooth manifold, let X be a complete vector field on M and let $\left(\phi_{t}: M \rightarrow M\right)_{t \in \mathbb{R}}$ be the flow of X. Let ω be a k-form on M. Show that the Lie derivative of ω with respect to X satisfies $\mathcal{L}_{X} \omega=\lambda \omega$ for some $\lambda \in \mathbb{R}$ if and only if $\phi_{t}^{*} \omega=e^{\lambda t} \omega$ for all $t \in \mathbb{R}$. (8 marks)
4. Let M be a compact Riemannian manifold without boundary.
(a) Show that

$$
\operatorname{div}(\phi X)=<\nabla \phi, X>+\phi \operatorname{div} X
$$

for any smooth function ϕ on M and any smooth vector field X on M.
(b) Let ϕ be a smooth subharmonic function on M, i.e. $\Delta \phi \geq 0$ on M. Show that ϕ is constant. $(8+4=12$ marks $)$
5. Let M, N be Riemannian manifolds. Let $f: M \rightarrow N$ be a smooth map. Show that f is harmonic if and only if, for any $p \in M$, if u is a smooth convex function in a neighbourhood of $f(p)$ in N, then $u \circ f$ is subharmonic in a neighbourhood of p. (12 marks)
6. Let M, N be compact Riemannian manifolds without boundary, and suppose the sectional curvature of N is nonpositive. Let $\left(f_{t}: M \rightarrow\right.$ $N)_{t \in[0,1]}$ be a smooth homotopy between maps f_{0} and f_{1}, and suppose the homotopy is a geodesic homotopy, i.e. for any $p \in M$, the curve $t \mapsto f_{t}(p)$ is a geodesic in N.
(a) Show that the energy $E\left(f_{t}\right)$ of the maps $f_{t}: M \rightarrow N$ satisfies $\frac{d^{2}}{d t^{2}} E\left(f_{t}\right) \geq 0$ for all $t \in[0,1]$.
(b) Suppose the map f_{0} has minimum energy in its homotopy class. Show that if f_{1} is harmonic, then $E\left(f_{t}\right)=E\left(f_{0}\right)$ for all $t \in[0,1]$, and the maps f_{t} are harmonic maps for all $t \in[0,1]$. $(10+6=16$ marks $)$

